

Original project motivation (2017)

INCIDENTAL NPs

Thousands to millions of tons of mining waste per year in NO(?)

ENGINEERED NPs

Qualitative production data: tens of millions tons/year, worldwide?

Accumulation of NPs in biota

Impact on seafood safety/quality and ecosystem

Routine ICP-MS instrumentation with µs dwell time pact on seafood Accumulation of NPS(> Agilent 8900/ Perkin Elmer NexION 300 etc)

in biota

Routine ICP-MS instrumentation with µs dwell time pact on seafood Seafood Accumulation of NPS(> Agilent 8900/ Perkin Elmer NexION 300 etc)

safety/quality and ecosystem

Single Particle Inductively Coupled Plasma Mass Spectrometry (SP-ICP-MS) Ion Detector Time (ms)

Single Particle Inductively Coupled Plasma Mass Spectrometry (SP-ICP-MS)

- C_{number}
- C_{mass}

Potential for:

High sensitivity and selectivity High throughput Reproducible quantitative data

Method development for SP-ICP-MS

Sample treatment

Instrumentation

Signal processing

Data treatment

Signal processing

- 4-fold decrease in variation = 16-fold decrease in sample size
- Data analysis in minutes instead of days
- Scientifically reproducible data
- (Now 4+ alternatives: SPCal, SPTool, TOF-SPI)

The blue mussel

- Efficient accumulator of pollutants
- Sedentary
- Tolerant
- Long lifespan
- Wide geographical distribution
- Common in coastal monitoring
- Most studied in (nanoparticle) ecotoxicology

Determination of Nanoparticles and Elements in Blue Mussels along the Norwegian Coastline

H: Levels of NPs are higher in anthropogenically impacted than in pristine natural and farmed sites.

→ Survey data needed.

69 pooled samples

11 elements

Latitude (decimal degrees)

Longitude (decimal degrees)

Levels of NPs - Anthropogenic - Farm - Natural

Levels of NPs _ Anthropogenic - Farm - Natural

Principal component analysis (PCA)

Future topics of interest: method

- Peak tail:
 - Sampling depth
 - Sensitivity
 - Different elements
 - Gas flow
 - False detections: JRCNM100 NP?
 - Separation?
 - SEM?
- Comparison of algorithms
- Automated parameter optimization
- Particle signals from adsorbed ionic elements

Future topics of interest: application

- NPs in a mining impacted fjord:
 - Ranfjorden. Hustadmarmor (Ca)
- Deep sea mining(?)
- Characterization of mining waste
 - Ranfjorden. Ba, Ti?
- Mussels:
 - Site-specific study / caged mussels
 - Electron microscopy
 - Effects
- SP greater sensitivity and selectivity vs total metals

Some limitations and lessons

- More natural and anthropogenic locations for P3
- Survey of Ranfjorden in P1
- More extensive field sampling and analysis for P1
- Generally:
 - Working range and bias: exp. dependence of mass/# on these
 - Data and metadata sharing: FAIR & Open
 - Interlab comparison and standardization
 - False positives/ negatives

ALGORITHM: Inhouse vs MassHunter

final optimized method, blue mussels (Paper III)

